Warren County School District PLANNED INSTRUCTION

COURSE DESCRIPTION

Course Title: <u>AP Calculus AB</u>

Course Number: _____00292____

Course Prerequisites: Completion of Pre-Calculus Honors with an average of 85% or Pre-Calculus with a 93% average is recommended.

Course Description:

Advanced Placement Calculus is designed for the student who is interested in a course which furthers his/her fundamental knowledge of calculus. It is designed to introduce and develop fundamental functional behavior of the following topics: differentiation, integration, infinite series, three-dimensional space, vectors, conic sections, polar coordinates, and parametric equations.

Suggested	Grade Level	: Grade	es 11-12
Suggesteu	Grade Here	<u>Orace</u>	

Length of Course: \Box One Semester

 \boxtimes Two Semesters

 \Box Other (Describe)

Units of Credit: __1__ (Insert *None* if appropriate)

PDE Certification and Staffing Policies and Guidelines (CSPG) Required Teacher Certifications: <u>CSPG #50 Mathematics</u>

Certification verified by WCSD Human Resources Department: 🛛 Yes 🛛 No

TEXTBOOK AND SUPPLEMENTAL MATERIALS

Planned Instruction reflects use of current Board approved textbook? Yes No (*If YES, complete the current textbook information below. If NO, complete new textbook information to be approved.*)

Board Approved Textbooks, Software, Supplemental Materials: Title: Advanced Placement Calculus Publisher: Pearson ISBN #: 9780133314557 Copyright Date: 2016 Date of WCSD Board Approval:

BOARD APPROVAL:

Date Written: ___07/13/15 ___

Date Approved: _____

Implementation Date: 2015-2016

SPECIAL EDUCATION AND GIFTED REQUIREMENTS

The teacher shall make appropriate modification to instruction and assessment based on a student's Individual Education Plan (IEP) or Gifted Individual Education Plan (GIEP).

COURSE OVERVIEW

I. Functions, Graphs, and Limits

A. Analysis of graphs

•With the aid of technology, graphs of functions are often easy to produce.

•To predict and to explain the observed local and global behavior of a function.

B. Limits of functions (including one-sided limits)

•An intuitive understanding of the limiting process.

•Calculating limits using algebra.

•Estimating limits from graphs or tables of data.

C. Asymptotic and unbounded behavior

•Understanding asymptotes in terms of graphical behavior.

•Describing asymptotic behavior in terms of limits involving infinity.

•Comparing relative magnitudes of functions and their rates of change. (For example, contrasting exponential growth, polynomial growth, and logarithmic growth.)

D. Continuity as a property of functions

•An intuitive understanding of continuity. (Close values of the domain lead to close values of the range.)

•Understanding continuity in terms of limits.

•Geometric understanding of graphs of continuous functions. (Intermediate Value Theorem and Extreme Value Theorem)

II. Derivatives

A. Concept of the derivative

•Derivative presented geometrically, numerically, and analytically.

•Derivative interpreted as an instantaneous rate of change.

•Derivative defined as the limit of the difference quotient.

•Relationship between differentiability and continuity.

B. Derivative at a point

•Slope of a curve at a point. Examples are emphasized, including points at which there are vertical tangents and points at which there are no tangents.

•Tangent line to a curve at a point and local linear approximation.

•Instantaneous rate of change as the limit of average rate of change.

•Approximate rate of change from graphs and tables of values.

C. Derivative as a function

•Corresponding characteristics of graphs of f and f'.

•Relationship between the increasing and decreasing behavior of f and the sign of f'.

•The Mean Value Theorem and its geometric consequences.

•Equations involving derivatives. Verbal descriptions are translated into equations involving

derivatives and vice versa.

D. Second derivatives

•Corresponding characteristics of the graphs of f, f', and f''.

•Relationship between the concavity of f and the sign of f".

•Points of inflection as places where concavity changes.

E. Applications of derivatives

•Analysis of curves, including the notions of monotonicity and concavity.

•Optimization, both absolute (global) and relative (local) extrema.

•Modeling rates of change, including related rates problems.

•Use of implicit differentiation to find the derivative of an inverse function.

•Interpretation of the derivative as a rate of change in varied applied contexts,

including velocity, speed, and acceleration.

F. Computation of derivatives

•Knowledge of derivatives of basic functions, including power, exponential, logarithmic, trigonometric, and inverse trigonometric functions.

•Basic rules for the derivative of sums, product, and quotients of functions;

•Chain rule and implicit differentiation.

III. Integrals

A. Interpretations and properties of definite integrals

•Computation of Riemann sums using left, right, and midpoint evaluation pints.

•Definite integral as a limit of Riemann sums over equal subdivisions.

•Definite integral of the rate of change of a quantity over an interval interpreted as the change of the quantity over the interval:

b
?
$$f'(x) = f(b) - f(a)$$

a

•Basic properties of definite integrals. (Examples include additivity and linearity.) B. Applications of integrals

•Appropriate integrals are used in a variety of applications to model physical, social, or economic situations.

•Students should be able to adapt their knowledge and techniques to solve other similar application problems.

•Using the integral of a rate of change to give accumulated change or using the method of setting up an approximating Riemann sum and representing its limit as a definite integral.

•Finding the area of a region, the volume of a solid with known cross sections, the average value of a function, distance traveled by a particle along a line.

C. Fundamental Theorem of Calculus

•Use of the Fundamental Theorem to evaluate definite integrals.

•Use of the Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined.

D. Techniques of antidifferentiation (optional topic)

•Antiderivatives following directly from derivatives of basic functions.

•Antiderivatives by substitution of variables (including change of limits for definite integrals).

E. Applications of antidifferentiation (optional topic)

•Finding specific antiderivatives using initial conditions, including applications to motion along a line.

•Solving separable differential equations and using them in modeling. In particular, studying the equation y'=ky and exponential growth.

F. Numerical approximations to definite integrals (optional topic)

•Use of Riemann and trapezoidal sums to approximate definite integrals of functions represented algebraically, geometrically, and by tables of values.

For standards, essential questions, content, and skills see Curriculum Map – Click here to enter text.

ASSESSMENT

Portfolio Assessment: _____ Yes __X_ No

District-Wide Common Final Examination Required: <u>X</u> Yes <u>No</u>

Course Challenge Assessment (Describe): Course challenge assessment will be based on activities and exams that measure student proficiency of the course standards at 84%.

WRITING TEAM: Warren County School District Teachers

WCSD STUDENT DATA SYSTEM INFORMATION

- 1. Is there a required final examination? <u>X</u> Yes <u>No</u> **Warren County School District Policy 9741 and*9744 state, "All classes in grades 9-12 shall have a final exam."
- 2. Does this course issue a mark/grade for the report card? <u>X</u> Yes <u>No</u>
- 3. Does this course issue a Pass/Fail mark? _____ Yes __X_ No
- 4. Is the course mark/grade part of the GPA calculation? <u>X</u> Yes _____No
- 5. Is the course eligible for Honor Roll calculation? <u>X</u> Yes <u>No</u>
- 6. What is the academic weight of the course?

_____No weight/Non credit ______Standard weight ______Enhanced weight