Warren County School District PLANNED INSTRUCTION

COURSE DESCRIPTION

Course Title: Advanced Placement Chemistry

Course Number: 00336

Course Prerequisites: <u>Completion of Advanced Inorganic and Advance Organic Chemistry with an average of 80% or higher or permission of the principal.</u>

Course Description:

Advanced Placement Chemistry provides able and motivated students with the opportunity to pursue collegelevel chemistry studies while still in high school. This course is a college-level laboratory program that enables students to receive college credit by passing the Advanced Placement Examination with appropriate scores in May of the school year.

Suggested Grade Level: Grades 11-12

Length of Course: \Box One Semester

 \boxtimes Two Semesters

 \Box Other (Describe)

Units of Credit: <u>1</u> (Insert *None* if appropriate)

PDE Certification and Staffing Policies and Guidelines (CSPG) Required Teacher Certifications: <u>CSPG 34 Chemistry</u>

Certification verified by WCSD Human Resources Department: 🛛 Yes 🛛 No

TEXTBOOK AND SUPPLEMENTAL MATERIALS

Continue using Board approved textbook? 🛛 Yes 🛛 No (If yes, then complete the information below.)

Board Approved Textbooks, Software, Supplemental Materials: Title: Chemistry: A Molecular Approach Publisher: Pearson ISBN #: 978-0-13-442903-8 Copyright Date: 2017 Date of WCSD Board Approval:

BOARD APPROVAL:

Date Written: <u>2/28/18</u>

Implementation Date: 2018-2019

SPECIAL EDUCATION AND GIFTED REQUIREMENTS

The teacher shall make appropriate modification to instruction and assessment based on a student's Individual Education Plan (IEP) or Gifted Individual Education Plan (GIEP).

COURSE OVERVIEW

(List the content to be taught)

Common Core Standards:

CC.3.5.11-12 Reading Informational Text CC.3.6.11-12 Writing

Science Standards:

3.2.12.A: GRADE 12 3.2.12.B: GRADE 12

The content of this course has been structured around the Big Ideas and Scientific Practices (sourced from the AP Chemistry, College Board Website) listed below:

Big Idea 1	The chemical elements are fundamental building materials of matter, and all matter can be understood in			
_	terms of arrangements of atoms. These atoms retain their identity in chemical reactions.			
Big Idea 2	Chemical and physical properties of materials can be explained by the structure and the arrangement of			
_	atoms, ions, or molecules and the forces between them.			
Big Idea 3	Changes in matter involve the rearrangement and/or reorganization of atoms and/or the transfer of electrons.			
Big Idea 4	Rates of chemical reactions are determined by details of the molecular collisions.			
Big Idea 5	The laws of thermodynamics describe the essential role of energy and explain and predict the direction of			
-	changes in matter.			
Big Idea 6	Any bond or intermolecular attraction that can be formed can be broken. These two processes are in a			
_	dynamic competition, sensitive to initial conditions and external perturbations.			

Science Practice	The student can use representations and models to communicate scientific phenomena and solve scientific				
1	problems.				
Science Practice	The student can use mathematics appropriately.				
2					
Science Practice	The student can engage in scientific questioning to extend thinking or to guide investigations within the				
3	context of the AP course.				
Science Practice	The student can plan and implement data collection strategies in relation to a particular scientific question.				
4	[Note: Data can be collected from many different sources, e.g., investigations, scientific observations, the				
	findings of others, historic reconstruction, and/or archived data.]				
Science Practice	The student can perform data analysis and evaluation of evidence.				
5					
Science Practice	The student can work with scientific explanations and theories.				
6					
Science Practice	The student is able to connect and relate knowledge across various scales, concepts, and				
7	representations in and across domains.				

Unit (Chapter)	Big Ideas	Learning s Objectives	Topics Covered		
Math in Chemistry* (1)	1	1.2,1.3, 1.18,1.19	Review: Dimensional Analysis, Significant Digits,		
Isotopes, Ions, Names, and Formulas* (2)	1	1.1,1.2,1.3, 1.4,1.5	Review: Isotopes, Ions, Nomenclature New: Mass Spectroscopy		
Reactions (4)	3	1.17,2.9,3.1,3.2, 3.5, 3.6	Review: Types of Reactions, Predicting Products, Net Ionic Equations		
Moles and Stoichiometry* (3)	1,3	1.4, 3.3,3.4,3.5, 3.6	Review: The Mole, Stoichiometry, Empirical Formula New: Molarity and Stoich		
Gases* (5)	2	2.3,2.4,2.5, 2.6,2.12,5.2	Review: Kinetic Molecular Theory, Gas Laws New: Graham's Law, Real Gases, Collecting a Gas Over Water		
Thermochemistry (6, 9.10)	5	5.2,5.3,5.4, 5.5,5.6,5.7, 5.8	New: Enthalpy, Phase Changes, Calorimetry, Hess's Law,		
Atomic Structure and Periodicity* (7,8)	1	1.5,1.6,1.7, 1.8,1.9,1.10,1.1 1,1.12, 1.13,1.14	Review: Electromagnetic Radiation, Bohr Model, Quantum Mechanical Model, Periodicity New: Energy of Light and Photons Calculations, Photoelectron Spectroscopy		
Bonding * (9,10)	2	2.1,2.7,2.10,2.1 1,2.13, 2.14,2.17, 2.18,2.19, 2.20,2.21, 2.22,2.23, 2.24,2.26, 2.27,2.28, 2.29,2.30, 3.10,5.1,5.95.10	Review: Lewis Structures, VSEPR Theory, Polarity New: Bond Formation, Lattice Energy, Coulomb's Law, Resonance, Formal Charge, Hybridization		
Spectroscopy	1	1.15,1.16	New: Electromagnetic Radiation, Spectroscopy, Concentration and Absorption, Beer's Law		
Kinetics** (14)	4	3.11,4.1,4.2,4.3, 4.4,4.5, 4.6,4.7,4.8, 4.9	Review: Energy Profiles, Mechanisms and Rate Laws, Method of Initial Rates, Factors Affecting Rate New: Integrated Rate Laws, Reaction Mechanisms		
Chemical Equilibrium** (15)	6	6.1,6.2,6.3, 6.4,6.5,6.6, 6.7,6.8,6.9, 6.10,	Review: Equilibrium, Equilibrium Constant, Reaction Quotient, LeChatelier's Principle New: Relationship Between K and Kp		
Acids and Bases** (16)	6	1.20,2.2,3.7, 6.11,6.12, 6.13,6.14, 6.15,6.16, 6.17	Review: Acid-Base Reactions, Bronsted-Lowry Theory, Strong and Weak, pH Calculations, Titrations New: Amines, Mixtures of Acids, pH of Salts		
Buffers (17)	6	5.16,6.18,6.19, 6.20	New: Buffers, Common Ion Effect, pH of a Buffer, Buffer Capacity		
Titrations (17)	6	1.20, 6.12,6.13	Review: Titration Method New: Titration Curves, Titration Calculations		
Precipitation Solubility** (17)	6	5.16,6.21,6.22, 6.23,6.24	New: Precipitation and Equilibrium, Ksp, Predicting Precipitate Formation, Common Ion Effect		
Thermodynamics (18)	5	5.12,5.13, 5.14,5.155.16,5. 17,5.18	New: Spontaneity, Entropy, Free Energy, Equilibrium		
Electrochemistry (19)	3	3.8,3.9,3.12,3.1 3,6.25	New: Galvanic Cells, Balancing Redox, Cell Potential, Free Energy, Equilibrium, Electrolytic Cells		

States of Matter*	2	2.3,2.16,	Review: States and Properties
(12)		2.26,2.24,	New: Representation and Properties of Metallic, Ionic, Covalent, and
		2.25,2.28,	Molecular Solids
		2.30,2.31,	
		2.32,5.10,	
		5.11	
Solutions** (13)	2	2.7,2.8,2.9,	Review: Net Ionic Equations, Colligative Properties, Solubility and
		2.10,2.15	Temperature

Labs:

Lab experiments are integrated throughout the course. At least 25% of class time will be spent doing labs with additional time analyzing them.

ASSESSMENT

Portfolio Assessment: 🗆 Yes 🛛 No

District-Wide Common Final Examination Required: \square Yes \square No

Course Challenge Assessment (Describe): Successful completion of the AP Chemistry Exam (3 or better) or the AP Chemistry Midterm and Final Exam (75% or better).

WRITING TEAM: Warren County School District Teachers

WCSD STUDENT DATA SYSTEM INFORMATION

- 1. Is there a required final examination? ⊠ Yes □ No **Warren County School District Policy 9741 and 9744 state, "All classes in grades 9-12 shall have a final exam.*"
- 2. Does this course issue a mark/grade for the report card? \boxtimes Yes \square No
- 3. Does this course issue a Pass/Fail mark? \Box Yes \boxtimes No
- 4. Is the course mark/grade part of the GPA calculation? \boxtimes Yes \square No
- 5. Is the course eligible for Honor Roll calculation? \square Yes \square No
- 6. What is the academic weight of the course?

 \Box No weight/Non credit

 \Box Standard weight

 \boxtimes Enhanced weight