PLANNED INSTRUCTION

COURSE DESCRIPTION

Course Title: AP Calculus AB

Course Number: 00292

Course Prerequisites: Completion of Pre-Calculus Honors or Pre-Calculus CP with an average of 80% or

above.

Course Description: This is the first course in the Calculus sequence and is intended for all

mathematics, engineering, and science students who want to further their fundamental knowledge of mathematics. This course is designed to study: limits, derivatives, trigonometric functions, the integral, and applications of

these ideas in various math, science, and physics problems.

Suggested Grade Level: Grades 11-12 Length of Course: Two Semesters

Units of Credit: 1

PDE Certification and Staffing Policies and Guidelines (CSPG) Required Teacher Certifications:

CSPG #50

To find the CSPG information, go to CSPG

Certification verified by the WCSD Human Resources Department: ⊠Yes □No

WCSD STUDENT DATA SYSTEM INFORMATION

Course Level: AP (1) GPA +10%

Mark Types: Check all that apply.

 \boxtimes F – Final Average \boxtimes MP – Marking Period \boxtimes EXM – Final Exam

GPA Type: ☐ GPAEL-GPA Elementary ☐ GPAML-GPA for Middle Level ☒ NHS-National Honor Society

☐ UGPA-Non-Weighted Grade Point Average ☐ GPA-Weighted Grade Point Average

State Course Code: 02124

To find the State Course Code, go to <u>State Course Code</u>, download the Excel file for *SCED*, click on SCED 6.0 tab, and chose the correct code that corresponds with the course.

PLANNED INSTRUCTION

TEXTBOOKS AND SUPPLEMENTAL MATERIALS

Board Approved Textbooks, Software, and Materials:

Title: Calculus AP

Publisher:Cengage LearningISBN #:9781337286886

Copyright Date: 2018

WCSD Board Approval Date: 6/29/2020

Supplemental Materials: Khan Academy Website, KUTA Software Website, AP Classroom

Curriculum Document

WCSD Board Approval:

Date Finalized:6/5/2020Date Approved:6/29/2020Implementation Year:2020-2021

SPECIAL EDUCATION, 504, and GIFTED REQUIREMENTS

The teacher shall make appropriate modifications to instruction and assessment based on a student's Individual Education Plan (IEP), Chapter 15 Section 504 Plan (504), and/or Gifted Individual Education Plan (GIEP).

PLANNED INSTRUCTION

SCOPE AND SEQUENCE OF CONTENT, CONCEPTS, AND SKILLS

Performance Indicator	PA Core Standard and/or Eligible Content	Month Taught and Assessed for Mastery
Define a limit. (1.2)	Click or tap here to enter text.	September September
Use limit notation. (1.2)	Click or tap here to enter text.	September September
Estimate limit values from graphs. (1.2)	Click or tap here to enter text.	September September
Estimate limit values from tables. (1.2)	Click or tap here to enter text.	September September
Determine limits using algebraic properties of limits. (1.3)	Click or tap here to enter text.	September September
Determine limits using algebraic manipulation. (1.3)	Click or tap here to enter text.	September September
Select procedures for determining limits. (Supplemental)	Click or tap here to enter text.	September September
Determine limits using the Squeeze Theorem. (1.3)	Click or tap here to enter text.	September September
Connect multiple representations of limits (Supplemental)	Click or tap here to enter text.	September September
Explore different types of discontinuities. (1.4)	Click or tap here to enter text.	September September
Define continuity at a point. (1.4)	Click or tap here to enter text.	September September
Confirm continuity over an interval. (1.4)	Click or tap here to enter text.	September September
Remove discontinuities. (1.4)	Click or tap here to enter text.	September September
Connect infinite limits and vertical asymptotes. (1.5)	Click or tap here to enter text.	September October
Connect limits at infinity and horizontal asymptotes. (3.5)	Click or tap here to enter text.	September October
Work with the Intermediate Value Theorem (IVT). (1.4)	Click or tap here to enter text.	September October
Define average and instantaneous rates of change at a point (2.1 and 2.2)	Click or tap here to enter text.	October October
Define the derivative of a function. (2.1)	Click or tap here to enter text.	October October
Use the derivative function. (2.1)	Click or tap here to enter text.	October October
Estimate derivatives of a function at a point. (Supplemental)	Click or tap here to enter text.	October October
Connect differentiability and continuity (when derivatives do and do not exist) (2.1)	Click or tap here to enter text.	October October
Apply the Power Rule (2.2)	Click or tap here to enter text.	October October
Use derivative rules (Constant, Sum, Difference, and Constant Multiple) (2.2)	Click or tap here to enter text.	October October
Find derivatives of cos x, sin x, e^x, and ln x (2.2 and 5.1 and 5.4)	Click or tap here to enter text.	October October
Use the Product Rule. (2.3)	Click or tap here to enter text.	October October

PLANNED INSTRUCTION

Use the Quotient Rule. (2.3)	Click or tap here to	October October
	enter text.	
Find the derivative of tangent, cotangent, secant, and/or cosecant functions. (2.3)	Click or tap here to enter text.	October October
Use the Chain Rule. (2.4)	Click or tap here to enter text.	November November
Use implicit differentiation. (2.5)	Click or tap here to enter text.	November November
Differentiate inverse functions. (5.3)	Click or tap here to enter text.	November November
Differentiate inverse trigonometric functions. (5.7)	Click or tap here to enter text.	November November
Select procedures for calculating derivatives. (Supplemental)	Click or tap here to enter text.	November November
Calculate higher-order derivatives. (2.3)	Click or tap here to enter text.	November November
Interpret the meaning of the derivative in context. (2.6)	Click or tap here to enter text.	November November
Connect position, velocity, and acceleration (straight-line motion). (2.2)	Click or tap here to enter text.	November November
Use rates of change in applied context other than motion. (2.6)	Click or tap here to enter text.	November December
Set up related rates. (2.6)	Click or tap here to enter text.	November December
Solve related rates problems. (2.6)	Click or tap here to enter text.	November December
Approximate values of a function using local linearity and linearization. (3.9)	Click or tap here to enter text.	November December
Use L'Hopital's Rule for determining limits of indeterminate forms. (5.6)	Click or tap here to enter text.	November December
Use the Mean Value Theorem. (3.2)	Click or tap here to enter text.	December December
Use the Extreme Value Theorem. (3.1)	Click or tap here to enter text.	December December
Find global extrema, local extrema, and critical points. (3.1)	Click or tap here to enter text.	December December
Determine intervals on which a function is increasing or decreasing. (3.3)	Click or tap here to enter text.	December December
Use the First Derivative Test to determine relative (local) extrema. (3.3)	Click or tap here to enter text.	December December
Use the Candidates Test to determine absolute (global) extrema. (Supplemental)	Click or tap here to enter text.	December December
Determine concavity of functions over their domains. (3.4)	Click or tap here to enter text.	December December
Use the Second Derivative Test to determine extrema. (3.4)	Click or tap here to enter text.	December December
Sketch graphs of functions and their derivatives. (3.6)	Click or tap here to enter text.	December January
Connect a function, first derivative, and second derivative. (Supplemental)	Click or tap here to enter text.	January January
Set up optimization problems. (3.7)	Click or tap here to enter text.	January January
Solve optimization problems. (3.7)	Click or tap here to enter text.	January January

PLANNED INSTRUCTION

Explore behaviors of implicit relations. (Supplemental)	Click or tap here to enter text.	January January
Explore accumulations of change. (4.2)	Click or tap here to enter text.	January January
Approximate Riemann Sums. (4.3)	Click or tap here to enter text.	January January
Use Riemann Sums, summation notation, and definite integral notation. (4.2 and 4.3)	Click or tap here to enter text.	January January
Use the Fundamental Theorem of Calculus with accumulation functions involving area. (4.2)	Click or tap here to enter text.	January February
Interpret the behavior of accumulation functions involving area. (4.2)	Click or tap here to enter text.	January February
Apply properties of definite integrals. (4.3)	Click or tap here to enter text.	January February
Use the Fundamental Theorem of Calculus with definite integrals. (4.4)	Click or tap here to enter text.	February February
Find the antiderivatives and indefinite integrals using basic rules and notation. (4.1)	Click or tap here to enter text.	February February
Integrate using substitution. (4.5)	Click or tap here to enter text.	February February
Integrate functions using long division and completing the square. (5.2 and Supplemental)	Click or tap here to enter text.	February February
Select techniques for antidifferentiation. (Supplemental)	Click or tap here to enter text.	February February
Model situations with differential equations. (Supplemental)	Click or tap here to enter text.	February February
Verify solutions for differential equations. (3.9)	Click or tap here to enter text.	February February
Sketch slope fields. (6.1)	Click or tap here to enter text.	February February
Reason using slope fields. (6.1)	Click or tap here to enter text.	February February
Find general solutions using separation of variables. (6.3)	Click or tap here to enter text.	February February
Find particular solutions using initial conditions and separation of variables. (6.3)	Click or tap here to enter text.	February February
Model exponentials with differential equations. (5.4 and 5.5)	Click or tap here to enter text.	February February
Find the average value of a function on an interval. (4.4)	Click or tap here to enter text.	March March
Connect position, velocity, and acceleration of functions using integrals. (Supplemental)	Click or tap here to enter text.	March March
Use accumulation functions and definite integrals in applied contexts. (Supplemental)	Click or tap here to enter text.	March March
Find the area between curves expressed as functions of x. (7.1)	Click or tap here to enter text.	March March
Find the area between curves expressed as functions of y. (7.1)	Click or tap here to enter text.	March March
Find the area between curves that intersect at more than two points. (7.1)	Click or tap here to enter text.	March March
Find the volume with cross sections of squares and rectangles. (Supplemental)	Click or tap here to enter text.	March March
Find the volume with cross sections of triangles and semicircles. (Supplemental)	Click or tap here to enter text.	March April

PLANNED INSTRUCTION

Find the volume using disc method revolving around x- or y-axis. (7.2)	Click or tap here to enter text.	March April
Find the volume using disc method revolving around other axes. (7.2)	Click or tap here to enter text.	March April
Find the volume using washer method revolving around the x- or y-axis. (7.2)	Click or tap here to enter text.	April April
Find the volume using washer method revolving around other axes. (7.2)	Click or tap here to enter text.	April April
AP Exam Review	Click or tap here to enter text.	April May

ASSESSMENTS

PSSA Academic Standards, Assessment Anchors, and Eligible Content: The teacher must be knowledgeable of the PDE Academic Standards, Assessment Anchors, and Eligible Content and incorporate them regularly into planned instruction.

Formative Assessments: The teacher will utilize a variety of assessment methods to conduct in-process evaluations of student learning.

Effective formative assessments for this course include: Suggested but not limited to: Bell Ringers, Exit Tickets, Quizzes, Cooperative Learning, Observations, Written work, Oral response, Selfevaluation, Homework, and Projects

Summative Assessments: The teacher will utilize a variety of assessment methods to evaluate student learning at the end of an instructional task, lesson, and/or unit.

Effective summative assessments for this course include: Suggested but not limited to: Performance Assessments, Chapter/Unit Tests, and Projects