PLANNED INSTRUCTION

COURSE DESCRIPTION

Course Title: Course Number: Course Prerequisites:	Calculus BC 00293 AP Calculus AB with an average of 60% or above.
Course Description:	AP Calculus BC is intended for accelerated students who have a thorough knowledge of the complete academic with honors sequence. It is designed to develop and reinforce the fundamental functional behavior of the following topics: differentiation, integration, infinite series, three-dimensional space, vectors, conic sections, polar coordinates, and parametric equations.
Suggested Grade Level	: Grade 12
Length of Course:	Two Semesters
Units of Credit:	1
PDE Certification and S	staffing Policies and Guidelines (CSPG) Required Teacher Certifications:
CSPG #50 Mathematics	
To find the CSPG information, g	o to <u>CSPG</u>
Certification verified b	y the WCSD Human Resources Department:

WCSD STUDENT DATA SYSTEM INFORMATION

Course Level: Mark Types:	AP & Dual Enrollment (.33) GPA +3% Check all that apply.
	\square F – Final Average \square MP – Marking Period \square EXM – Final Exam
GPA Type:	□ GPAEL-GPA Elementary □ GPAML-GPA for Middle Level ⊠ NHS-National Honor Society ⊠ UGPA-Non-Weighted Grade Point Average

State Course Code: 02125

To find the State Course Code, go to <u>State Course Code</u>, download the Excel file for *SCED*, click on SCED 6.0 tab, and chose the correct code that corresponds with the course.

PLANNED INSTRUCTION

TEXTBOOKS AND SUPPLEMENTAL MATERIALS

Board Approved Textbooks, So	ftware, and Materials:
Title:	Calculus AP
Publisher:	Cengage Learning (Larson/Battaglia)
ISBN #:	9781337286886
Copyright Date:	2018
WCSD Board Approval Date:	6/29/2020

Supplemental Materials: Click or tap here to enter text.

Curriculum Document

WCSD Board Approval:	
Date Finalized:	6/5/2020
Date Approved:	6/29/2020
Implementation Year:	2020-2021

SPECIAL EDUCATION, 504, and GIFTED REQUIREMENTS

The teacher shall make appropriate modifications to instruction and assessment based on a student's Individual Education Plan (IEP), Chapter 15 Section 504 Plan (504), and/or Gifted Individual Education Plan (GIEP).

PLANNED INSTRUCTION

SCOPE AND SEQUENCE OF CONTENT, CONCEPTS, AND SKILLS

Performance Indicator	PA Core Standard and/or Eligible Content	Month Taught and Assessed for Mastery
Find limits graphically, algebraically, and using tables.	Click or tap here to enter text.	September October
Find limits at infinity and infinite limits.	Click or tap here to enter text.	September October
Use the Squeeze Theorem.	Click or tap here to enter text.	September October
Identify x-values for which a function is not continuous; determine removable and non-removable discontinuities.	Click or tap here to enter text.	September October
Identify horizontal and vertical asymptotes of graphs.	Click or tap here to enter text.	September October
Graphically estimate the slope of a curve at a given point.	Click or tap here to enter text.	September October
Determine the differentiability of a function.	Click or tap here to enter text.	September October
Find the derivative of a function using the definition of derivative, basic derivative rules, product rule, quotient rule, and chain rule.	Click or tap here to enter text.	September October
Find the equation of a line tangent to a curve at a given point.	Click or tap here to enter text.	September October
Find the derivative using implicit differentiation.	Click or tap here to enter text.	September October
Find derivatives of trigonometric functions.	Click or tap here to enter text.	September October
Find higher-order derivatives.	Click or tap here to enter text.	September October
Complete application problems involving velocity and rates of change.	Click or tap here to enter text.	September October
Solve related-rate word problems.	Click or tap here to enter text.	September October
Identify absolute and relative extrema of a function and determine the value of the derivative at indicated extrema.	Click or tap here to enter text.	September October
Identify intervals on which a function is increasing/decreasing and concave up/down.	Click or tap here to enter text.	September October
Find the critical numbers of a function.	Click or tap here to enter text.	September October
Determine whether Rolle's Theorem can be applied to a function on an indicated interval. If Rolle's Theorem can be applied, find all values of c in the interval such that $f(c) = 0$.	Click or tap here to enter text.	September October
Apply the Mean Value Theorem to a function on an indicated interval and explain why the Mean Value Theorem does not apply to certain functions.	Click or tap here to enter text.	September October
Apply the First and Second Derivative tests to identify relative extrema.	Click or tap here to enter text.	September October
Identify points of inflection for a function.	Click or tap here to enter text.	September October

PLANNED INSTRUCTION

Sketch the graph of an equation using extrema, intercepts, symmetry,	Click or tap here to	September October
asymptotes, concavity, points of inflection and intervals of increasing	enter text.	October
and decreasing.		
Complete optimization problems involving area, volume, and	Click or tap here to	September October
business applications.	enter text.	etteset
Find sums given Sigma notation and use Sigma notation to write sums	Click or tap here to	September October
given by an expression.	enter text.	october
Set up and evaluate indefinite integrals.	Click or tap here to enter text.	September October
Use upper and lower sums to approximate the area of a region using	Click or tap here to	September October
the indicated number of subintervals.	enter text.	October
Set up and evaluate definite integrals of algebraic and trigonometric	Click or tap here to	September October
functions using the limit process, geometrically as an accumulation	enter text.	October
process and, using the Fundamental Theorem of Calculus.		
Apply the Mean Value Theorem for Integrals for a function over a	Click or tap here to	September October
given interval.	enter text.	October
Integrate to find a function F(x) and demonstrate the Second	Click or tap here to	September October
Fundamental Theorem of Calculus by differentiating the result.	enter text.	October
Evaluate definite and indefinite integrals using substitution.	Click or tap here to	September October
	enter text.	
Use the Trapezoidal Rule and Simpson's Rule to approximate the	Click or tap here to enter text.	September October
value of a definite integral for an indicated value of n.		
Find the first and higher-order derivatives of exponential functions,	Click or tap here to enter text.	October November
logarithmic functions (base <i>e</i> and other bases), and inverse	enter text.	
trigonometric functions.		
Find indefinite integrals and evaluate definite integrals involving	Click or tap here to enter text.	October November
exponential functions, logarithmic functions (base <i>e</i> and other bases),	enter text.	
and inverse trigonometric functions.		
Interpret the relationship between slope fields with the solution	Click or tap here to enter text.	October November
curves of differential equations and use slope fields to approximate	enter text.	
solutions to differential equations.		
Find the general solution of a differential equation and use initial	Click or tap here to enter text.	October November
conditions to find particular solutions of differential equations.	enter text.	
Solve differential equations using separation of variables.	Click or tap here to enter text.	October November
Use Euler's Method to approximate solutions of differential	Click or tap here to enter text.	October November
equations.	Click or tap here to	October
Use exponential functions and differential equations to model and solve applied problems.	enter text.	November
Solve and analyze logistic differential equations.	Click or tap here to enter text.	October November
Find the area of a region bounded by two or more curves.	Click or tap here to enter text.	November December
Find the volume of a solid formed by revolving a region about the x-	Click or tap here to	November December
axis, y-axis, and lines other than the axes.	enter text.	Section
Find the arc length of a smooth curve.	Click or tap here to	November December
	enter text.	December

PLANNED INSTRUCTION

Find the area of a surface of revolution.	Click or tap here to enter text.	November December
Find integrals using integration by parts.	Click or tap here to enter text.	December January
Solve trigonometric integrals involving powers of sine and cosine,	Click or tap here to	December January
powers of secant and tangent, trigonometric substitution, and	enter text.	sandary
products of sine and cosine.		
Use partial fraction decomposition with linear and quadratic factors	Click or tap here to	December January
to integrate rational functions.	enter text.	Sundary
Evaluate an indefinite integral using a table of integrals.	Click or tap here to enter text.	December January
Evaluate an improper integral has an infinite limit of integration and	Click or tap here to	December January
improper integrals that have an infinite discontinuity.	enter text.	Sundary
Apply L'Hopital's Rule to evaluate a limit.	Click or tap here to enter text.	December January
Determine whether a series converges or diverges using the nth-Term	Click or tap here to	January February
Test fir Divergence, the Integral Test, the Direct Comparison Test, the	enter text.	i cordary
Alternating Series Test, the Ratio Test, the Limit Comparison test, and		
the Root Test.		
Classify a convergent series as absolutely or conditionally convergent.	Click or tap here to	January February
	enter text.	
Understand the definition of a Power Series.	Click or tap here to enter text.	January February
Find a geometric power series that represents a function.	Click or tap here to enter text.	January February
Find a Taylor and Maclaurin series for a function.	Click or tap here to enter text.	January February
Use properties of p-series and harmonic series.	Click or tap here to enter text.	January February
Find Taylor and Maclaurin polynomial approximations of elementary	Click or tap here to enter text.	January February
functions.	Click or tan hara ta	January
Find the radius and interval of convergence of a power series.	Click or tap here to enter text.	February
Determine endpoint convergence of a power series.	Click or tap here to enter text.	January February
Differentiate and integrate a power series.	Click or tap here to enter text.	January February
Sketch the graph of a curve and find the slope of a tangent line to a	Click or tap here to	March April
curve given a set of parametric equations and in polar form.	enter text.	April
Eliminate the parameter in a set of parametric equations.	Click or tap here to enter text.	March April
Find a set of parametric equations to represent a curve.	Click or tap here to enter text.	March April
Find the arc length of a curve given by a set of parametric equations and in polar form.	Click or tap here to enter text.	March April
Calculate the area of a surface of revolution in parametric form and in polar form.	Click or tap here to enter text.	March April
Rewrite rectangular coordinates and equations in polar form.	Click or tap here to enter text.	March April
Find the points of intersection of two polar graphs.	Click or tap here to enter text.	March April

PLANNED INSTRUCTION		
Calculate the area of a region bounded by a polar graph.	Click or tap here to enter text.	March April
Write a vector in component form and as a linear combination.	Click or tap here to enter text.	April May
Understand the 3-D rectangular coordinate system.	Click or tap here to enter text.	April May
Use properties of the dot product of two vectors and use the dot product to find the angle between two vectors.	Click or tap here to enter text.	April May
Perform vector operations including the cross product and interpret the results graphically.	Click or tap here to enter text.	April May
Use vectors to solve problems involving force and velocity.	Click or tap here to enter text.	April May
Analyze vectors in space.	Click or tap here to enter text.	April May
Use 3-D vectors to solve real world problems.	Click or tap here to enter text.	April May
Find the direction cosines of a vector in space.	Click or tap here to enter text.	April May
Analyze and sketch a space curve given by a vector-valued function.	Click or tap here to enter text.	April May
Extend the concepts of limits, continuity, differentiation, and integration to vector-valued functions.	Click or tap here to enter text.	April May
Describe the velocity and acceleration associated with a vector- valued function.	Click or tap here to enter text.	April May
Use vector-valued functions to analyze projectile motion.	Click or tap here to enter text.	April May

ASSESSMENTS

PSSA Academic Standards, Assessment Anchors, and Eligible Content: The teacher must be knowledgeable of the PDE Academic Standards, Assessment Anchors, and Eligible Content and incorporate them regularly into planned instruction.

Formative Assessments: The teacher will utilize a variety of assessment methods to conduct in-process evaluations of student learning.

Effective formative assessments for this course include: Suggested but not limited to: Bell Ringers, Exit Tickets, Cooperative Learning, Observations, Written Work, Quizzes, Oral Response, Self-Evaluation, and Homework

Summative Assessments: The teacher will utilize a variety of assessment methods to evaluate student learning at the end of an instructional task, lesson, and/or unit.

Effective summative assessments for this course include: Suggested but not limited to: Performance Assessment, Chapter/Unit Tests, and Projects